The temperature and chronology of heavy-element nucleosynthesis in low-mass stars

> S. Van Eck, P. Neyskens, A. Jorissen, S. Goriely, L. Siess, B. Plez

> > Université Libre de Bruxelles, Belgium Université Montpellier 2, France

Physics of Evolved Stars 2015 To the memory of Olivier Chesneau

Nice June 8-12

ULB

• if $T \ge 100 \ 10^6 K$

¹³C(α,**n**)¹⁶O

- Pro:
 - Stellar evolution models $1-3M_{\odot}$: $T_{interpulse} \approx 100 \ 10^{6} \text{ K}$

• if $T > 350 \ 10^6 K$

 $^{14}\mathrm{N}(\,\alpha\,,\,\gamma\,)^{18}\mathrm{F}(\,\beta\,^{+})^{18}\mathrm{O}(\,\alpha\,,\,\gamma\,)^{22}\mathrm{Ne}(\,\alpha\,,\mathbf{n})^{25}\mathrm{Mg}$

- Pro:
 - Meteoritic isotopic ratio points at $T\approx 300$ $10^6 K$
 - → require at least a late activation of 22 Ne(α ,n) 25 Mg
- Con:
 - No overabundance of ²⁵Mg in Ba stars based on MgH (Malaney & Lambert 1988)

Isotopic abundance patterns in the solar system derived from primitive carbonaceous chondrite meteorites of type CI

Fig. 17. The s-process reaction path in the Nd/Pm/Sm region with the branchings at A=147, 148, and 149. Note that ¹⁴⁸Sm and ¹⁵⁰Sm are shielded against the r process. These two isotopes define the strength of the branching.

Käppeler F., Prog. Part. Nucl. Phys. 43, 419 – 483 (1999).

Table 2

Results from various branching analyses of relevance for the main s-process component

Branch point isotope Deduced s-process parameter Reference

$^{147}\mathrm{Nd}/^{147}\mathrm{Pm}/^{148}\mathrm{Pm}$	$n_n = (4.1 \pm 0.6) \cdot 10^8 \text{ cm}^{-3}$	[123]
$^{151}{ m Sm}/^{154}{ m Eu}$	$T_8 = 3.5\pm0.4$	[58]
$^{163}{ m Dy}/^{163}{ m Ho}$	$\rho_s = (6.5 \pm 3.5) \cdot 10^3 \ \mathrm{g \ cm^{-3}}$	[151]
¹⁷⁶ Lu	$T_8 = 3.1\pm0.6$	[137, 152]
$^{121}{ m Sn}/^{122}{ m Sb}$	$T_8>2.4$	[153]
^{134}Cs	${\rm T_8} = 1.9 \pm 0.3$	[154]
	$T_8 = 1.7 \pm 0.5$	[51]
$^{185}W/^{186}Re$	$n_n = (3.5^{+1.7}_{-1.1}) \cdot 10^8 \text{ cm}^{-3}$	[155]
$kT = 8.62 \times T_8 \text{ keV}$		

Käppeler F., Prog. Part. Nucl. Phys. 43, 419 – 483 (1999).

Table 2

Results from various branching analyses of relevance for the main s-process component

Branch point isotope Deduced s-process parameter Reference

$ m ^{147}Nd/^{147}Pm/^{148}Pm$	$n_n = (4.1 \pm 0.6) \cdot 10^8 \ { m cm}^{-3}$	[123]					
$^{151}{ m Sm}/^{154}{ m Eu}$	$T_8 = 3.5 \pm 0.4$	[58]					
$^{163}\mathrm{Dy}/^{163}\mathrm{Ho}$	$\rho_s = (6.5 \pm 3.5) \cdot 10^3 ~{\rm g}~{\rm cm}^{-3}$	[151] Consistent]				
¹⁷⁶ Lu	$T_8 = 3.1 \pm 0.6$	[137,152]					
$^{121}Sn/^{122}Sb$	$T_8 > 2.4$	[153]					
^{134}Cs	$T_8 = 1.9 \pm 0.3$	[154]					
	$T_8 = 1.7 \pm 0.5$	[51]					
$^{185}W/^{186}Re$	${ m n}_n = (3.5^{+1.7}_{-1.1}) \cdot 10^8 \ { m cm}^{-3}$	[155]					
$kT = 8.62 \times T_8 \ keV$							
Käppeler F., Prog. Part. Nucl. Phys. 43, 419 – 483 (1999).							

The s-process is in local equilibrium within a given isotopic chain
 →N_s(^AZr) <σ_A> = cst within the Zr chain

$$\omega^* = Zr/^{93}Zr$$

$$\omega^* = \langle \sigma_{93} \rangle \times \left[\frac{1}{\langle \sigma_{90} \rangle} + \frac{1}{\langle \sigma_{91} \rangle} + \frac{1}{\langle \sigma_{92} \rangle} + \frac{1}{\langle \sigma_{94} \rangle} \right]$$

- n-capture cross-sections are temperature-sensitive
- $\rightarrow \omega^*$ is a sensitive function of temperature

• Problems:

• Atomic lines of Zr: no detected isotopic shift

• Molecular lines: ZrO: only targets are S-type stars (giants, temperatures 2700-4000, s-process-enriched, 0.5<C/O<1)

- Contrarily to previous claim (Lambert et al. 1995), ⁹³ZrO band heads at 692.5 nm, 674.2 nm, 681.15 nm, and 639.05 nm could not be detected
- Fraction of Zr isotopes for a 2 M_{\odot} solar-metallicity model after 10 thermal pulses (STAREVOL):

Isotope	⁹⁰ Zr	⁹¹ Zr	⁹² Zr	⁹³ Zr	⁹⁴ Zr	⁹⁶ Zr
Fraction	0.466	0.099	0.164	0.045	0.222	0.004

- Problems:
 - Atomic lines of Zr: no detected isotopic shift

Olivier: Close circumstellar environment of π^1 Gru

- Molecular lines: ZrO: only targets are S-type stars (giants, temperatures 2700-4000, s-process-enriched, 0.5<C/O<1)
 - Contrarily to previous claim (Lambert et al. 1995), ⁹³ZrO band heads at 692.5 nm, 674.2 nm, 681.15 nm, and 639.05 nm could not be detected
 - Fraction of Zr isotopes for a 2 M_{\odot} solar-metallicity model after 10 thermal pulses (STAREVOL):

Isotope	⁹⁰ Zr	⁹¹ Zr	⁹² Zr	⁹³ Zr	⁹⁴ Zr	⁹⁶ Zr
Fraction	0.466	0.099	0.164	0.045	0.222	0.004

The Henize sample of S stars

-180

+90

- The Henize sample of 205 S stars:
- R < 10.5, declin. < -25°
- \sim 50% of intrinsic S stars (genuine TPAGB)
- $\sim 50\%$ of extrinsic S stars (binary masqueraders)

(Van Eck et al. 1999, 2000, 2000, 2015)

- Available data:
 - Geneva UBV B1 B2 V1 G photometry
 - SAAO JHKL photometry
 - Colours dereddened according to Drimmel et al. (2003)
 - 160 low resolution spectra: $\Delta \lambda = 3$ Å , 4400-8400 Å , **ESO Boller & Chivens**
 - 70 high-resolution spectra (ESO CAT, R=30 000 -60 000) centered on the Tc lines around 4250 Å
 - 23 HERMES spectra (Raskin et al. 2011,

talk of H. Van Winckel),

R=85 000, 380-900nm

S stars parameters

• MARCS model atmospheres for late-type stars:

(Gustafsson, Edvardsson, Eriksson, Jorgensen, Nordlund & Plez, 2008, A&A 486, 951)

- MARCS model atmospheres for S and SC stars:
 - hydrostatic equilibrium, LTE, convection: MLT
 - Spherical symmetry for log g < 2, plane-parallel otherwise
 - New ZrO linelist
 - Opacity sampling > 105 wavelength points
 - 2700K < Teff < 4000K (step 100K)
 - C/O = 0.5, 0.750, 0.899, 0.925, 0.951, 0.971, 0.991
 - [s/Fe] = 0., +1., +2.
 - [Fe/H] = 0., -0.5 ; [alpha/Fe] = -0.4 x [Fe/H]
 - Log(g) = 0, 1, 2, 3, 4, 5
 - M = 1M0
- More than 3500 converged model atmospheres
- Parameters derived from comparison between synthetic and observed spectra and photometric colors

S stars abundances

S stars abundances

S stars abundances

s-process cosmo-chronology

s-process cosmo-chronology

⁹⁹Tc→⁹⁹Ru ($\tau_{1/2} = 0.21 \ 10^6 \text{ yrs}$)

⁹³Zr→⁹³Nb ($\tau_{1/2}$ = 1.53 10⁶ yrs)

The derived ages correlate with the infrared excess: $R = F(12 \ \mu m)/F(2.2 \ \mu m)$

s-process cosmo-chronology

Table 1: Derived ages and masses for our sample of intrinsic S stars.

Star	Mass	t _{TP}	t _{TP,min}	t _{TP,max}	ts	M _{mod}	$\log(L/L_{\odot})$	C/O	[Fe/H]
Name	loss	(Myr)	(Myr)	(Myr)	(Myr)	(M_{\odot})			
o ¹ Ori	VW	1.3	0.7	2.6	0.6	2	3.45	0.50	-0.45
	S	1.8	0.7	3.9	0.6	3			
AA Cam	VW	1.4	0.9	2.3	0.6	3	3.91	0.50	-0.40
	S	1.6	0.7	2.7	0.4	3			
KR CMa	VW	1.6	0.7	2.6	0.8	3	-	0.50	-0.34
	S	1.8	0.7	3.9	0.6	3			
CSS 454	VW	1.7	1.1	2.6	1.0	2	-	0.50	-0.40
	S	1.7	1.0	3.9	1.0	2			
HIP									
103476	VW	2.2	1.2	3.2	1.4	3	3.59	0.50	-0.01
	S	2.5	1.5	4.0	1.3	3			
AD Cyg	VW	2.7	2.1	3.9	1.9	3	-	0.97	-0.05
	S	3.0	2.2	4.0	1.8	3			
NQ Pup	VW	2.8	2.1	4.2	2.0	3	2.95	0.50	-0.31
	S	3.1	2.3	4.0	1.9	3			
HR Peg	VW	3.2	2.4	4.8	2.4	3	3.39	0.75	0.00
	S	3.0	2.4	3.7	1.8	3			

Summary

- s-process neutron source identified in low-mass AGB stars: ${}^{13}C(\alpha, n){}^{16}O$
 - Not derived from meteoritic abundances resulting from a mix of nucleosynthetic events, but **from individual stellar sites**
 - The s-process temperature in low-mass stars is lower than 250 10⁶ K
 - This estimate is independent from stellar evolution models
- Quantitative constrains on AGB evolution: intrinsic S stars have spent :
 - between 1.3 and 3.2 10⁶ years on the TP-AGB (since the occurrence of the first thermal pulse)
 - between 0.4 and 2.4 10⁶ years as S stars (since the occurrence of the first 3rd dredge-up)

P. Neyskens, S. Van Eck, A. Jorissen, S. Goriely, L. Siess & B. Plez, *Nature* 517, 174–176 (08 January 2015)

Jobs announcement

• 3 PhD positions, ULB + KULeuven + ROB (Belgium)

STARLAB project:

"Physical and chemical processes at work in single and binary low- and intermediate-mass stars "

• 1 Post-doc position, ULB (Belgium)

"Binary and extrinsic stars in the Gaia-ESO and GAIA era"

- Deadline for application is June 28
- See <u>http://www.astro.ulb.ac.be</u> (Jobs announcement)