

The first water fountain in a PN with synchrotron emission

Olga Suarez – OCA (France)

J.F. Gómez (IAA, Spain) Ph. Bendjoya (OCA, France) L.F. Miranda (IAA, Spain) M.A. Guerrero (IAA, Spain) G. Ramos-Larios (U.Guadalajara, México) J. Green (SKA, UK) L. Uscanga (NOA, Greece) R. Rizzo (CAB-INTA, Spain)

Outline

- + Water fountains in context
 - ♦ What are they?
 - ♦ Why to study them ?
- Water masers in PNe
- + IRAS 15103-5754
 - ♦ Masers
 - ♦ Radio continuum
 - ♦ Real-time changes

- + Where are they found ?
 - ♦ In the environments of YSO and star forming regions
 - \diamond In AGNs
 - ♦ In evolved objects: AGB, post-AGB, PN
- + Which physical processes ?
 - ♦ Hyperfine transition between two rotational states: $6_{16} \rightarrow 5_{23}$
 - ♦ Excitation mainly by shocks
- + Which physical conditions ?
 - ♦ Special conditions in T and P -- T \approx 100K
 - ♦ Abondances: $n(H_2O)/n(H_2)$ → 2-4 x10⁻⁴
 - \Rightarrow nH₂ $\leq 10^{11}$ cm⁻³
- + Advantages :
 - Information about position, velocity, and proper motions

Masers in AGB stars

	SiO	H ₂ O	ОН
Location	Several stellar radii (< 10 AU)	Inner regions of envelopes (10 - 100 AU)	Hundreds of stellar radii (~ 10 ⁴ AU)
Extinction (years after entering AGB)	~10 yr	~100 yr	~1000 yr
			AGB

H_2O masers in evolved stars

	AGB	Post-AGB	PN
Location	Around the star	Around the star In the jets	Around the stars (In the lobes)
Velocity	~ 20-30 km/s	~ 20-30 km/s ~ 100 km/s	~ 20-30 km/s ~100 km/s
Number of objects	Many	~20 spherical emission 14 water	5 emission central star 1 <i>water</i>
		fountains	fountain

The « water fountains »

- + What are they?
 - Evolved stars with water masers with components with velocities on the order of 100 km/s – tracing jets
 - ♦ First named by Likkel & Morris (1988) for IRAS 16342 3814
- Type of objects
 - ♦ Late AGB stars, post-AGB... and PN
 - ♦ Bipolar
 - Obscured at visible wavelengths "anonymous"
 - ♦ Massive
 - ♦ 14 "classic" water fountains known phenomenon not so rare (?)
- + What do they imply?
 - ♦ First manifestation of axisymmetric jets
 - ♦ Key objects to trace the emission of the jets that shape the PNe
 - ♦ Formation of the cavities present in the PNe (Koning et al. 2013)

Masers at the equatorial outflow

No masers at the equatorial outflow

I15103
(Gómez et al. 2015)
W43A – 50 yr
(Vlemmings et al.2006)
I18286 – 56-73 yr
(Yung et al. 2011)
I16342 – 100 yr
(Sahai et al. 1999)

Masers in bowshocks

l18460 – 6 yr (Imai et al.2013)

OH12.8-0.9 – 70 yr (Boboltz& Marvel 2005) I19134 – 40 yr (Imai et al 2007) I19190 – 59 yr (Day et al. 2010) I16552 (Suárez et al. 2008) I18113 (Gómez et al. 2011) I15445 (Pérez Sanchez et al. 2011) I18043 (Pérez Sanchez et al. 2011)

 Magnetically collimated jet - synchrotron radiation – Perez-Sanchez et al. 2013

ATCA – 22 & 5 GHz

IR (Lagadec et al. 2011) + ATCA (Perez-Sanchez et al. 2011)

+ Jet precession – sign of binarity ?

Water masers in PNe

Believed impossible before 2001, now 5 H₂O-PNe confirmed

- K3–35 (Miranda et al. 2001)
- IRAS 17347 3139 (de Gregorio Monsalvo et al. 2004)
- IRAS 18061 2505 (Suárez et al. 2007, Gómez et al.2008)
- IRAS 15103 5754 (Suárez et al.2012, Gómez et al. 2015)
- IRAS 16333 4807 (Uscanga et al. 2014)
- Characteristics :
 - ♦ All bipolar
 - ♦ Masers close to the central star not high velocity except for I15103
 - ♦ 2 optically visible, 3 obscured

bservato

The missed link: IRAS 15103

bservatoire

The missed link: IRAS 15103

bservatoire

NTT - J image Ramos-Larios et al. 2012

Maser distribution

Water masers - ATCA

Hubble-flow jet

- + Faster components further from the center
- + Explosive emission of the jet

 Witness of the explosive formation of the PN – ATCA archive + observations

+ Witness of the explosive formation of the PN- ATCA archive + observations 1998.4 1999.2 1999.2 2002.7 1991.4 Flux density (Jy) 0.0 2002.7 2004.9 2004.9 2010/2011 0.01 10 Suárez et al. 2015 Frequency (GHz)

Witness of the explosive formation of the PN – ATCA archive + observations

Witness of the explosive formation of the PN – ATCA archive + observations

Spectral index variation

$Sv \alpha \ v^{\, \alpha}$, α spectral index

Changes in spectral index

+ Classic PN – thermal emission (free-free) - a \sim 2 for n \leq 10 GHz

```
a \sim - 0.1 for n > 10 GHz
```

- 2010: a ~ 0.54 compatible with synchrotron emission Fermi first order acceleration (e- accelerated to high velocity in non-relativistic schocks)
- + 2012: a ~ 0.28 no synchrotron compatible

Possible explanations

+ Possibilities :

a) 1. Explosive emission of a jet that produces synchrotron radiation

2. Coulomb colissions of e- with plasma produce a change in the spectral index (loss of low frequencies)

 b) Razin effect within a plasma – plasma with ordered and turbulent (jitter) magnetic components. Ionization supresses ordered synchrotron leaving only « jitter » component (at high frequencies)

115103 - in the future

- Both possibilities imply the recent onset of ionization –
 witness of the formation of a PN « in live »
- The real cause of the disappearance of synchrotron ? in several years...
 - Coulomb losses: spectrum flatter each year + possible cut-off at low frequencies
 - 2. Razin effect: no significant modifications
 - In any case beginning of thermal radiation (free-free) at high frequencies
- Maybe a common process in the transition to the PN phase

Very preliminary results

bservatoire

