

High-contrast imaging of debris discs

Julien Milli

11 June 2015

Work in collaboration with David Mouillet, Dimitri Mawet, Anne-Marie Lagrange, Jean-Charles Augereau, Olivier Absil

Content

- I. Imaging debris discs : motivations and challenges
- II. Characterising the stellar halo
- III. Asymmetries in the β Pictoris disc
- IV. The dust properties of HR 4796
- v. Early science results from SPHERE

Conclusions

Content

Content

- I. Imaging debris discs : motivations and challenges
- II. Characterising the stellar halo
- III. Asymmetries in the β Pictoris disc
- IV. The dust properties of HR 4796
- v. Early science results from SPHERE

Conclusions

Content

What is a debris disc ?

Resolved imaging

HR 4796

Imaging brings a additional information: the localisation of the dust

High-contrast imaging

Two prerequisites: high contrast and high-angular resolution

High contrast

High contrast

Content

- I. Imaging debris discs : motivations and challenges
- II. Characterising the stellar halo
- III. Asymmetries in the β Pictoris disc
- IV. The dust properties of HR 4796
- v. Early science results from SPHERE

Conclusions

II. Characterisation of the stellar halo

How to decouple the stellar halo from an astrophysical object ?

Reference star differential	Angular differential	Polarimetric differential
imaging (RDI)	imaging (ADI)	imaging (PDI)
10 II. Characterisation of the stellar halo		

Refe	rence star differential	Angular differential	Polarimetric differential
	imaging (RDI)	imaging (ADI)	imaging (PDI)
11		. Characterisation of the stellar halo)

II. Characterisation of the stellar halo

a) Quantify and correct for the biases on discs

- b) Build a reference PSF
- c) Understand the temporal evolution of the PSF

The biases of ADI on discs

II. Characterisation of the stellar halo

How to best combine the data to build the reference PSF ?

Library of PSF

- LOCI: linear combination of images to minimise the noise (Lafrenière et al. 2007)
- PCA: orthogonalisation of a library of PSF, clipped to the first modes (Soummer et al 2012, Amara et al. 2012)

Reference star differential	Angular differential	Polarimetric differential
imaging (RDI)	imaging (ADI)	imaging (PDI)
4 - 11	Characterization of the stallar half	

The temporal evolution of the PSF

II. Characterisation of the stellar halo

Refe	rence star differential	Angular differential	Polarimetric differential
	imaging (RDI)	imaging (ADI)	imaging (PDI)
17		. Characterisation of the stellar halo)

II. Characterisation of the stellar halo

imaging (ADI)

imaging (PDI)

imaging (RDI)

Content

- I. Imaging debris discs : motivations and challenges
- II. Characterising the stellar halo
- III. Asymmetries in the β Pictoris disc
- IV. The dust properties of HR 4796
- v. Early science results from SPHERE

Conclusions

An emblematic case of disc/planet interaction

The disc warped by an unseen gravitational perturber (Mouillet et al. 1997, Augereau et al. 2001)

The planet discovered in 2008 with VLT/NaCo

III. Asymmetries in the β Pictoris disc

Simultaneously measure the disc and planet orientation

Simultaneous measurement of the position angle

- of the planet
- of the outer disc
- of the inner warped disc

The planet is aligned with the warped inner disc

III. Asymmetries in the β Pictoris disc

The internal parts of the disc

- L band (3.8μm) : resolution of 0.09 arcsec and good AO correction
- Combination of 7 deep datasets from 2009 to 2013

Morphology of the disc: the position of the spine

Morphology compatible with an inclined disc by a few degrees combined with anisotropy of scattering.

Modelisation

Optically thin ring of dust, scattering stellar light anisotropically.

Comparison with a dynamical model

- Can the planet explain the warp and spine position ?
- Model simulating the dynamical evolution of planetesimals over 20Myrs perturbed by a planet on an inclined orbit.

Many opened questions remaining

Deprojected distribution of CO

Content

- I. Imaging debris discs : motivations and challenges
- II. Characterising the stellar halo
- III. Asymmetries in the β Pictoris disc
- IV. The dust properties of HR 4796
- v. Early science results from SPHERE

Conclusions

Content

IV. The dust properties of HR4796

Polarised intensity at Ks (2.2µm)

Total intensity

A brightness inversion occurs between polarised and unpolarised light.

IV. The dust properties of HR4796

Two scenarios possible

Β φ=90°

Scenario 1

Two scenarios possible

Β φ=90° Scenario 2 С **φ=120°** Side away Α from the **φ=60°** С Α В Earth **Relative intensity Φ=166° Φ=14°** 30 90 150 Scattering angle Side towards Polarised intensity Intensity Earth $pl_A < pl_C$ $I_A > I_C$

What does the theory say?

- Constraints from the Spectral Energy Distribution
 - Free parameters: size, distribution and composition of the grains

- Modelling the scattering
 - Mie (1908) and Distribution of Hollow Spheres (DHS, Min et al. 2005)
 - Fundamental assumption: spherical grains

Incompatibility between theory and observations

IV. The dust properties of HR4796

Discussion on the assumption of spherical grains

Porous aggregates with a phase function increasing beyond ~70°
Optical depth close to 1, proposed by Perrin et al. 2015.

Content

- I. Why studying debris discs ?
- II. Characterising the stellar halo
- III. Asymmetries in the b Pictoris disc
- IV. The dust properties of HR 4796
- v. New perspectives with SPHERE
- Conclusions

V. SPHERE in a nutshell

SPHERE secrets: stability, high Strehl, and diffraction control

Final say for HR4796 with IRDIS

Still strong residuals along the semi-minor axis preventing a clear-cut statement

V. New perspectives with SPHERE

Final say for HR4796: second chance with IRDIFS

Disk detected entirely, even along the semi-minor axis (0.3")

V. New perspectives with SPHERE

Final say for HR4796: second chance with IRDIFS

The IFS reveals the dust properties from $0.95\mu m$ to $1.3\mu m$

V. New perspectives with SPHERE

Dust albedo (integrated along the disc)

The dust has a red color, as previously reported by HST (Debes et al. 2008)

V. New perspectives with SPHERE

Conclusions

- This work, at the frontier between instrumentation and interpretation enabled to:
 - Investigate optimal data reduction strategies
 - Apply them to two famous examples to study the dust properties (HR4796) and dust morphology (β Pic)
- Next challenge: access very short separations (warm dust, planet/disc interactions) with multi-wavelength, multitechnique approaches, combining all available high-angular resolution instruments (ALMA / VLTI)

Nasmith plateform, UT3

Evolved star science with SPHERE (Science Verification results)

Planet search around the young (125Myr), nearby (31pc) white dwarf GD50

Xu et al. accepted in A&A Today on astro-ph

