A NEWLY DISCOVERED STELLAR TYPE:
DUSTY POST-RED GIANT BRANCH (POST-RGB) STARS
IN THE MAGELLANIC CLOUDS

Devika kamath
Institute of Astronomy, KU. Leuven, Belgium

Collaborators
Peter Wood (1), Hans Van Winckel (2), Jundan Nie (1)

(1) RSAA, ANU, Australia
(2) IvS, KU.Leuven, Belgium
(3) Beijing Normal University, China

10 June, 2015

PHYSICS OF EVOLVED STARS, 2015, Nice
In Memory of Olivier Chesneau…

Weather = ☀️, blue skies, NICE!
Nuclear burning lives are terminated on the AGB with a ‘Superwind’ mass-loss (mass-loss rates up to $10^{-4} \, M_\odot \, yr^{-1}$).
Great majority of PNe are not spherical: axi-symmetry; point-symmetry jet-like structures are common… NOAM ;)
(Balick & Frank, 2002; De Marco 2008, Zijlstra 07)

BINARITY!
Binary interaction can determine the ultimate of the star …
ROCHE LOBE OVERFLOW

COMMON ENVELOPE

UNSTABLE MASS TRANSFER

A-SPHERICITY

MERGERS

CLOSE PERIOD BINARIES

INTERMEDIATE PERIOD BINARIES

BIPOLAR

LONG PERIOD BINARIES

SINGLE STARS

COMMON ENVELOPE

WIND ACCRETION

PLANETARY NEBULAE

MASS-LOSS

JETS

DOUBLE-DEGENRATE
WHEN DOES THE STAR FILL IT’S ROCHE LOBE???
WHEN DOES THE STAR FILL IT’S ROCHE LOBE???

Stars reach the tip of the AGB (TAGB) **without** filling its Roche lobe…

OUTCOME ~ they likely evolve as single stars do
RESULT ~ formation of a PN with wide orbits
(Moe & De Marco 2006)
Roche lobe filling occurs on the AGB but above the RGB-tip...

OUTCOME 1 ~ common envelope (CE) event
RESULT ~ close binary or stellar merger
(Ivanova et al. 2013)

OUTCOME2 ~ some sort of a stable mass transfer
RESULT 2~ Formation of an intermediate period binary

e.g.: Post-AGB binaries surrounded with DUSTY circumbinary discs (Van Winckel 2007)
WHEN DOES THE STAR FILL IT’S ROCHE LOBE???

Roche lobe filling occurs **below** the RGB-tip…

(e.g., Han et al. 1995; Heber 2009; Nie et al. 2012)

OUTCOME 1 ~ common envelope (CE) event
RESULT ~ close binary or stellar merger
(Paczynski 1976; Webbink 1984)

OUTCOME 2 ~ some sort of stable mass transfer
RESULT 2 ~ Formation of an intermediate period binary

* e.g., ”Post-RGB” binaries surrounded with DUSTY circumbinary discs!!!
THE DISCOVERY OF DUSTY POST-RGB STARS...
OPTICALLY VISIBLE POST-AGB STARS IN THE SMC* & LMC**

*Kamath et al. 2014 MNRAS, 439, 2211
**Kamath et al. 2015 MNRAS (Accepted)

Mid-IR Spitzer Space Telescope Surveys

Candidates with Mid-IR excess selected from the Mid-IR SST survey

SMC: S^3MC (Bolatto et al. 2007) & SAGE-SMC (Gordon et al. 2010)

LMC: SAGE (Meixner et al. 2006) & (Blum et al. 2006)

✓ Candidate Selection
✓ Spectroscopic Examination
✓ SED Analysis
✓ Variability Analysis
✓ Spectroscopically verified Catalogues of Post-AGB, “Post-RGBs* and other interesting objects
1) CANDIDATE SELECTION:
Mid-IR excess
Optical colour
Suitable luminosity

2) OPTICAL SPECTROSCOPY
AAOmega on the 3.9m AAT
Optical Low Resolution Spectra R~1300
Wavelength Coverage = 3700 Å - 8700 Å
A NEWLY-DISCOVERED STELLAR TYPE: DUSTY POST-RGB STARS

✓ Mid-IR excess
✓ A-K spectral types
✓ Low log g
✓ Low [Fe/H]
✓ Low -luminosity (< 2500 L⊙)

42 Post-RGBs

119 Post-RGBs

Note: These numbers are not complete due to incompleteness of the survey…

MINIMUM Expected numbers: SMC ~ 30 more, LMC ~ 750 more
WHAT ARE THESE POST-RGBs???

- Pre-mature evolution off the RGB via mass-loss
- Single star mass loss
 - too weak!
- Mass loss induced via binary
 - Way to go!
- Very like to be Binaries!
- Can they be Mergers…?
INTERLOPING OBJECTS IN OTHER EVOLUTIONARY STAGES…

- Core He Burning?
- No! Too Dusty…

Post RGBs
The Post-RGB stars (old) have [Fe/H] peaking at about -1.0 dex.

The Post-AGB stars (old) have [Fe/H] peaking at about -0.7 dex.

The PMS are a younger population peaking at >-0.5 dex.
Early AGB stars?

- Initial masses $M < 1.85 \text{ M}_\odot$
 - Unlikely!
 - Initial masses $M < 1.85 \text{ M}_\odot$
 - Maybe!!!

Binary interaction depends on when the star attains its ‘largest radii...
Establish connections to possible precursors and progeny....
ESTABLISHING THEIR EVOLUTIONARY STATUS - PRECURSORS

SEQUENCE-E Variables

Close binary red giants that show ellipsoidal light variations
Nicholls et al. 2010

Nicholls et al. 2010

Luminosities of the TAGB

Close binary PNNNe have AGB luminosities above the TRGB,

EAGB and RGB binaries undergoing a CE event but not merging have luminosities below the TRGB

Mbol(TRGB) = −3.6

Nie et al., 2012
EVOLUTIONARY CONNECTION BETWEEN THE SEQUENCE-E STARS AND POST-RGB STARS

Method: Comparing theoretically predicted birthrates Nie et al. (2012) with the observationally determined birthrates of our new sample of dusty post-RGB stars
Relative theoretical birthrates (PRGB, PEAGB, MERGERS, tip-RGB) in arbitrary units, come from population synthesis models, Nie et al, 2012

BUT WE NEED TO SCALE THEM TO THE OBSERVATIONAL FIELDS OF THE POST-RGB STARS

The number of stars we expect to see at any given time in the top 1 magnitude of the RGB is $k = 2.77 \times 10^6 \times \text{birthrate tip-RGB}$

Total number of stars observed in the top 1 magnitude of the RGB in the fields searched for post-RGB stars is 118927 (from SAGE)

Total predicted birthrates = $118927 \times \left(\frac{\text{birthrate}}{k} \right)$
OBSERVATIONAL BIRTHRATES OF POST-RGB STARS

Number of observed post-RGB stars
Estimated evolutionary lifetime

RGB log Teff range = log Teff(RGB) + 0.05 and continues to log Teff = 4.

Note: We take into account the incompleteness of the survey… (incompleteness factor of 7.3)
CONNECTION TO POPULATION MODELS OF RGB BINARIES

Post-RGB production rates
Post-EAGB production rates
Birthrates of mergers on the RGB
Total predicted rate of production

OBSERVED BIRTHRATES
Ratio of the observed to the total predicted birthrate
Observationally estimated post-RGB birthrate is much higher than the theoretically predicted birthrate.

The average ratio of observed to predicted birthrate is 9.6.

At lower metallicities, mergers dominate.

Post-EAGB birthrates increases to about 25% of the total birthrate at the highest luminosities.
Number of observed post-RGB stars
Estimated evolutionary lifetime

RGB log T_{eff} range = log T_{eff}(RGB) + 0.05 and continues to log $T_{\text{eff}} = 4$.

Note: We take into account the incompleteness of the surgery....
UNCERTAINTIES

• An over-estimation of the incompleteness factor
• An underestimate of the post-RGB evolution time
• Interlopers in the post-RGB sample
• Uncertainties in the model post-RGB birthrate
EVOLUTIONARY STATUS - PROGENY

Binary He WDs / Cataclysmic Variables

Sub-dwarf B stars

Vos et al., 2013, TALK OF JORIS VOS… coming soon!!!

Low-luminosity Planetary Nebulae

(Bond & Livio 1990; Yungelson et al. 1993; Soker 1997; Bond 2000; Zijlstra 2007; de Marco 2009)

(Bond 1994, 2000; Miszalski et al. 2009)
CONCLUSIONS

• Newly discovered low-luminosity, dusty post-RGB stars

 • An unexplored phase of binary stellar evolution

 • Termination of RGB evolution via binary interaction

• Precursors - Sequence-E stars

 • The observationally estimated post-RGB birthrate is much higher than the theoretically predicted birthrate

 • Some of these objects are likely to be products of mergers. Models predict that mergers dominate at lower luminosities

• Progeny - Binary He WDs, SdBs, Low-luminosity PNe???
CONCLUSIONS

• Newly discovered low-luminosity, dusty post-RGB stars
 • An unexplored phase of binary stellar evolution
 • Termination of RGB evolution via binary interaction

• Precursors - Sequence-E stars
 • The observationally estimated post-RGB birthrate is much higher than the theoretically predicted birthrate
 • Some of these objects are likely to be products of mergers. Models predict that mergers dominate at lower luminosities

• Progeny - Binary He WDs, SdBs, Low-luminository PNe???
ESTABLISHING THE BINARY NATURE OF THESE POST-RGB SYSTEMS

• Radial Velocity Estimates
 • On-going…

• SED Characteristics
 • Majority of them show disc-like SEDs (=> binaries)
 • but a small number show shell-like SEDs (=> evolved discs with cooler dust???)

• Chemical Abundance Analysis
 • On-going… BUT challenging as these objects are rather faint…
The poorly constrained distances to Galactic objects currently classified as post-AGB stars means that it is not possible to identify post-RGB systems among them...
POSSIBLE GALACTIC POST-RGBS I: ST PUP

- Chemical pattern: Depletion (characteristic of binaries)
- Pop II Cepheid - W-Vir star with (P ~ 19 days)

Gonzalez & Wallerstein et al. 1996
POSSIBLE GALACTIC POST-RGB II : AU PEG

- Pop II Cepheid - W-Vir star with pulsation period of 2 days…
- Mass function of 0.57 Msun (m1 ~0.3 to 0.65 Msun) and (m2 ~ 0.9 to 1.4 Msun)
- Chemical pattern: No signs of depletion

Jurkovic M. et al., 2007