A NEWLY DISCOVERED STELLAR TYPE: DUSTY POST-RED GIANT BRANCH (POST-RGB) STARS IN THE MAGELLANIC CLOUDS

Devika kamath Institute of Astronomy, KU. Leuven, Belgium

Peter Wood⁽¹⁾, Hans Van Winckel⁽²⁾, Jundan Nie

⁽¹⁾₍₂₎ RSAA, ANU, Australia
⁽³⁾ IvS, KU.Leuven, Belgium
Beijing Normal University, China

PHYSICS OF EVOLVED STARS, 2015, Nice In Memory of Olivier Chesneau...

EVOLUTIONARY FATE OF A SINGLE STAR

AN ALTERNATIVE EVOLUTIONARY CHANNEL

Great majority of PNe are not spherical: axi-symmetry; point-symmetry **jet-like** structures are common... NOAM :) (Balick & Frank, 2002; De Marco 2008, Zijlstra 07)

BINARITY!

Binary interaction can determine the ultimate of the star ...

WHEN DOES THE STAR FILL IT'S ROCHE LOBE???

DISCLAIMER: THE PHYSICS OF THE POST-ROCHE LOBE FILLING EVOLUTION ARE VERY UNCERTAIN...

WHEN DOESTHE STAR FILL IT'S ROCHE LOBE???

Stars reach the tip of the AGB (TAGB) without filling its Roche lobe...

OUTCOME ~ they likely evolve as single stars do RESULT ~ formation of a PN with wide orbits (Moe & De Marco 2006)

WHEN DOESTHE STAR FILL IT'S ROCHE LOBE ???

Roche lobe filling occurs on the AGB but above the RGB-tip...

OUTCOME I ~ common envelope (CE) event

RESULT ~ close binary or stellar merger

(Ivanova et al. 2013)

OUTCOME2 ~ some sort of a stable mass transfer

RESULT 2~ Formation of an intermediate period binary

e.g.: Post-AGB binaries surrounded with DUSTY circumbinary discs (Van Winckel 2007)

WHEN DOESTHE STAR FILL IT'S ROCHE LOBE ???

Roche lobe filling occurs **below** the RGB-tip...

(e.g., Han et al. 1995; Heber 2009; Nie et al. 2012)

OUTCOME I ~ common envelope (CE) event RESULT ~ close binary or stellar merger (Paczynski 1976; Webbink 1984)

OUTCOME2 ~ some sort of stable mass transfer

RESULT 2 ~ Formation of an intermediate period binary

e.g., "Post-RGB" binaries surrounded with DUSTY circumbinary discs!!!

THE DISCOVERY OF DUSTY POST-RGB STARS...

OPTICALLY VISIBLE POST-AGB STARS IN THE SMC* & LMC**

*Kamath et al. 2014 MNRAS, 439, 2211 **Kamath et al. 2015 MNRAS (Accepted)

Mid-IR Spitzer Space Telescope Surveys

Candidates with Mid-IR excess selected from the Mid-IR SST survey

LMC: SAGE (Meixner et al. 2006) & (Blum et al. 2006)

- ✓ Candidate Selection
- ✓ Spectroscopic Examination
- ✓ SED Analysis
- ✓ Variability Analysis

✓ Spectroscopically verified Catalogues of Post-AGB, "Post-RGBs* and other interesting objects

I) CANDIDATE SELECTION:

Mid-IR excess Optical colour Suitable luminosity

2) OPTICAL SPECTROSCOPY

AAOmega on the 3.9m AAT Optical Low Resolution Spectra R~1300 Wavelength Coverage = 3700 Å - 8700 Å

A NEWLY-DISCOVERED STELLAR TYPE: DUSTY POST-RGB STARS

Note: These numbers are not complete due to incompleteness of the survey...

MINIMUM Expected numbers: SMC ~ 30 more, LMC ~ 750 more

WHAT ARE THESE POST-RGBs???

- Pre-mature evolution off the RGB via massloss
- Single star mass loss
 - too weak!
- Mass loss induced via binary
 - Way to go!
- Very like to be Binaries!
- Can they be Mergers...?

INTERLOPING OBJECTS IN OTHER EVOLUTIONARY STAGES...

Core He Burning ?

• No! Too Dusty...

INTERLOPING OBJECTS IN OTHER EVOLUTIONARY STAGES...

- Pre-main sequence?
 - No!
 - Low Log g and [Fe/H]

The Post-RGB stars (old) have [Fe/H] peaking at about -1.0 dex The Post-AGB stars (old) have [Fe/H] peaking at about -0.7 dex The PMS are a younger population peaking at >-0.5 dex

INTERLOPING OBJECTS IN OTHER EVOLUTIONARY STAGES...

• Early AGB stars?

Initial masses M < 1.85 Msun

• Unlikely!

Initial masses M < 1.85 Msun

• Maybe!!!

Binary interaction depends on when the star attains its 'largest radii...

Establish connections to possible precursors and progeny....

ESTABLISHING THEIR EVOLUTIONARY STATUS - PRECURSORS

SEQUENCE-E Variables

Close binary red giants that show ellipsoidal light variations

Nicholls et al. 2010

0

2

-2

Mbol

Nie et al., 2012

-6

-4

Luminosities

of the TAGB

Close binary

PNNe have AGB

luminosities

above the TRGB,

EAGB and RGB

binaries

undergoing a CE

event but not

merging have

luminosities

below the TRGB

EVOLUTIONARY CONNECTION BETWEEN THE SEQUENCE- E STARS AND POST-RGB STARS

Method: Comparing theoretically predicted birthrates Nie et al. (2012) with the observationally determined birthrates of our new sample of dusty post-RGB stars

THEORETICAL BIRTHRATES...

Relative theoretical birthrates (PRGB, PEAGB, MERGERS, tip-RGB) in arbitrary units, come from population synthesis models, Nie et al, 2012

BUT WE NEED TO SCALE THEM TO THE OBSERVATIONAL FIELDS OF THE POST-RGB STARS

The number of stars we expect to see at any given time in the top 1 magnitude of the RGB is $k = 2.77 \times 10^6 \times birthrate tip-RGB$

Total number of stars observed in the top I magnitude of the RGB in the fields searched for post-RGB stars is 118927 (from SAGE)

Total predicted birthrates = 118927*(birthrate/k)

OBSERVATIONAL BIRTHRATES OF POST-RGB STARS

Note: We take into account the incompleteness of the survey... (incompleteness factor of 7.3)

CONNECTION TO POPULATION MODELS OF RGB BINARIES

Post-RGB production rates Post-EAGB production rates Birthrates of mergers on the RGB Total predicted rate of production OBSERVED BIRTHRATES Ratio of the observed to the

total predicted birthrate

CONNECTION TO POPULATION MODELS OF RGB BINARIES

Observationally estimated post-RGB birthrate is much higher than the theoretically predicted birthrate

The average ratio of observed to predicted birthrate is 9.6

At lower metallicities, mergers dominate

Post-EAGB birthrates increases to about 25% of the total birthrate at the highest luminosities

OBSERVATIONAL BIRTHRATES OF POST-RGB STARS

Note: We take into account the incompleteness of the surgery....

UNCERTAINTIES

- An over-estimation of the incompleteness factor
- An underestimate of the post-RGB evolution time
- Interlopers in the post-RGB sample
- Uncertainties in the model post-RGB birthrate

EVOLUTIONARY STATUS - PROGENY

Sub-dwarf B stars

Binary He WDs/ Cataclysmic Variables

Merle.T et al., 2014

Vos et al., 2013, TALK OF JORIS VOS... coming soon!!!

Low-luminosity Planetary Nebulae

(Bond & Livio 1990; Yungelson et al. 1993; Soker 1997; Bond 2000; Zijlstra 2007; de Marco 2009)

(Bond 1994, 2000; Miszalski et al. 2009)

CONCLUSIONS

- Newly discovered low-luminosity, dusty post-RGB stars
 - An unexplored phase of binary stellar evolution
 - Termination of RGB evolution via binary interaction
- Precursors Sequence-E stars
 - The observationally estimated post-RGB birthrate is much higher than the theoretically predicted birthrate
 - Some of these objects are likely to be products of mergers. Models predict that mergers dominate at lower luminosities
- Progeny Binary He WDs, SdBs, Low-Iuminsoity PNe???

CONCLUSIONS

- Newly discovered low-luminosity, dusty post-RGB stars
- Precursors Sequence-E stars
 - much higher than the theoretically predicted birthrate
 - Some of these objects are likely to be products of mergers. Models predict that mergers dominate at lower luminosities
- Progeny Binary He WDs, SdBs, Low-luminsoity PNe???

ESTABLISHING THE BINARY NATURE OF THESE POST-RGB SYSTEMS

- Radial Velocity Estimates
 - On-going...
- SED Characteristics
 - Majority of them show disc-like SEDs (=> binaries)
 - but a small number show shell-like SEDs (=> evolved discs with cooler dust???)
- Chemical Abundance Analysis
 - On-going... BUT challenging as these objects are rather faint...

Disc-type SED with hot dust

Disc-type SEDs (evolved discs)

Shell-type SED?

GALACTIC POST-RGBs???

The poorly constrained distances to Galactic objects currently classified as post-AGB stars means that it is **not possible to identify** post-RGB systems among them...

POSSIBLE GALACTIC POST-RGBS I : ST PUP

- Chemical pattern: Depletion (characteristic of binaries)
- Pop II Cepheid W-Vir star with (P ~ 19 days)

Gonzalez & Wallerstein et al 1996

POSSIBLE GALACTIC POST-RGB II : AU PEG

- Pop II Cepheid W-Vir star with pulsation period of 2 days...
- Mass function of 0.57 Msun (m1 ~0.3 to 0.65 Msun) and (m2 ~ 0.9 to 1.4 Msun)
- Chemical pattern: No signs of depletion

