

PNe with binary central stars

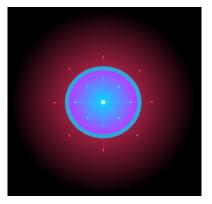
David Jones

Planetary nebulae: What can they tell us about binary evolution?

David Jones

Instituto de Astrofísica de Canarias

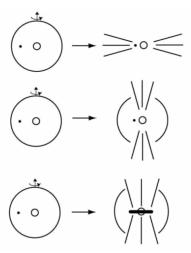
Physics of Evolved Stars 2015



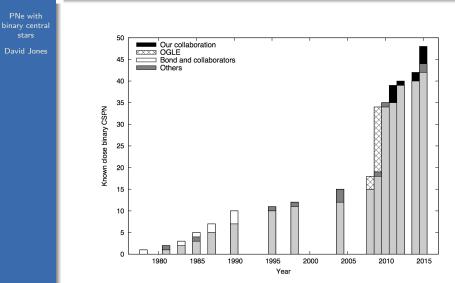
Aspherical planetary nebulae

PNe with binary central stars

- Rapidly rotating stars?
- Magnetic fields?
- BINARIES!



Common envelope ejection The source of the density contrast

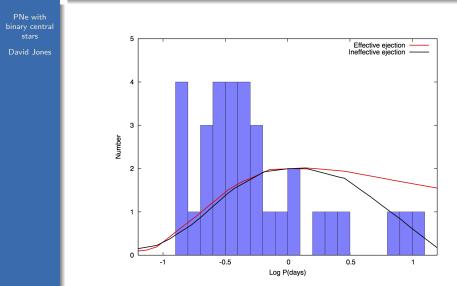


Nordhaus & Blackman (2006)

Slow-going (until now) drdjones.net/bCSPN for a full list

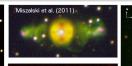
Why should you care? Hen 2-428 (Santander-García et al. 2015)

PNe with binary central stars


- Only confirmed super- M_C mass DD that will merge in $< t_{Hubble}$
- Higher density of DD than expected
- "Fresh out of the CE oven"
- Key in understanding formation of
 - CVs
 - Novae
 - Supernovae Ia
 - LMXBs
 - ...

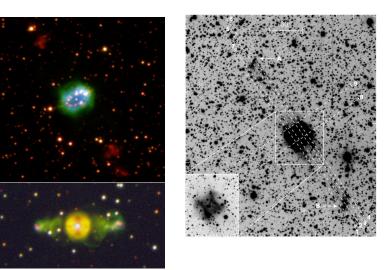
Problem children

Pop-synth comparison with Han et al. (1995)



Morphologies

Jones et al. (2014)



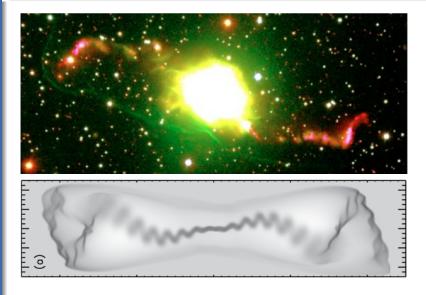
Polar outflows

PNe with binary centra stars

$\underset{Fg \ 1}{\mathsf{Polar}} \text{ outflows}$

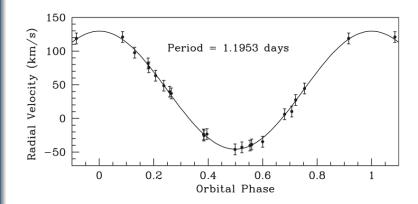
PNe with binary centra stars

David Jones



Boffin et al. (2012)

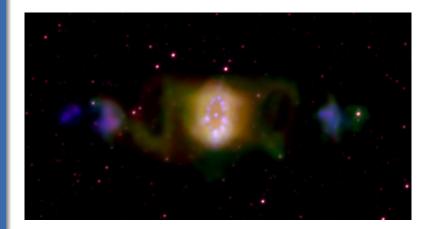
Fg1 Hydro models from Raga et al. (2009) \rightarrow P \sim 100–1000 years!


PNe with binary centra stars

Fg1 Period is much shorter!

PNe with binary central stars

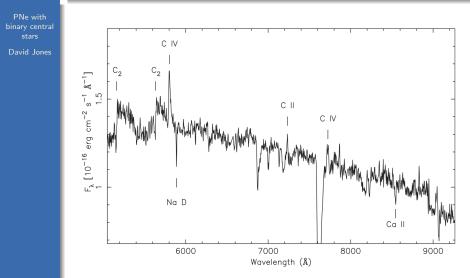
$\underset{\mathsf{Ages}}{\mathsf{Polar}} \text{ Outflows}$


PNe with binary centra stars

PN	t_{nebula} (yrs/kpc)	t_{jets} (yrs/kpc)
A 63	3500±200	5200±1200
The Necklace	$1100{\pm}100$	2350±450
ETHOS 1	900±100	$1750{\pm}250$
Fg 1	5000	6000-16000

IPHASX J194359.5+170901 Corradi et al. (2011)

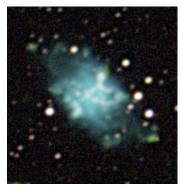
PNe with binary centra stars



The Necklace IPHASX J194359.5+170901

PNe with binary centra stars

Carbon dwarf secondary Miszalski, Boffin & Corradi (2013)


Inflated secondaries

Further evidence of mass transfer?

PNe with binary central stars

Abell 46 (Afşar & Ibanoğlu 2008)

Hen2-155 (Jones et al. 2015a)

Pre-CE mass transfer episode

PNe with binary central stars

- Jets older than main nebula
 - Masses can be used to measure *B*-fields (Tocknell et al. 2014)
- Inflated and/or chemically polluted secondaries

PNe with binary central stars

Abundances

Jones et al. (2015b), Corradi et al. (2015)

DAL 14				
PNe with nary central		PN	adf	Period(days)
stars		A 30	≫100	?
avid Jones	Abundances from	A 46	120	0.47
	ORLs and CELs are	A 58	89	?
	discrepant, on average by a factor of 2–5.	Hf 2-2	70	0.40
		Ou 5	56	0.36
		NGC 1501	32	N/A
	Some show much	M 1-42	20	N/A
	higher <i>adfs</i> , most of those are binaries (or born again).	NGC 6778	18	0.15
		NGC 40	17	N/A
		NGC 2022	16	N/A
		Hen 2-161	11	~ 1
		A 63	8	0.46
		Hen 2-155	6	0.15
		NGC 5189	2	4.04

High adfs

PNe with binary central stars

- Low nebular masses (Corradi et al. 2015)
 - Not a typical CE phase?
 - Fall-back?
 - Planets?
- Abundances more consistent with novae?
 - An intrinsically binary phenomenon
- Presence of a second, low-temp, high-Z gas phase
 - Enriched material ejected into a pre-existing nebula?
- Not all binaries have high adfs
 - High $adf \Rightarrow$ binarity, but binarity \Rightarrow high adf

Summary

PNe with binary central stars

- Binaries responsible for shaping of some PN
- Pre-CE mass transfer
- Chemisty more consistent with eruptive event?
- PN are good laboratories for studying binaries
- Critical for understanding lots of other phenomena

Thank you!

PNe with binary centra stars

